Package 'deepdive'

Title: Deep Learning for General Purpose
Description: Aims to provide simple intuitive functions to create quick prototypes of artificial neural network or deep learning models. In addition novel ensemble models like 'deeptree' and 'deepforest' has been included which combines decision trees and neural network.
Authors: Rajesh Balakrishnan
Maintainer: Rajesh Balakirshnan <[email protected]>
License: MIT + file LICENSE
Version: 1.0.4
Built: 2024-11-24 04:54:40 UTC
Source: https://github.com/rajeshb24/deepdive

Help Index


Build or train bagged deeptree or deepnet of multiple architecture

Description

Build or train bagged deeptree or deepnet of multiple architecture.Based on error choice either select best model or average multiple model with random variable cut,data cut and architechture

Usage

deepforest(
  x,
  y,
  networkCount = 3,
  layerChoice = c(2:3),
  unitsChoice = c(4:10),
  cutVarSizePercent = 0.6,
  cutDataSizePercent = 0.6,
  activation = c("sigmoid", "sigmoid"),
  reluLeak = 0,
  modelType = "regress",
  iterations = 500,
  eta = 10^-2,
  seed = 2,
  gradientClip = 0.8,
  regularisePar = 0,
  optimiser = "adam",
  parMomentum = 0.9,
  inputSizeImpact = 1,
  parRmsPropZeroAdjust = 10^-8,
  parRmsProp = 0.9999,
  treeLeaves = NA,
  treeMinSplitPercent = 0.3,
  treeMinSplitCount = 100,
  treeCp = 0.01,
  errorCover = 0.2,
  treeAugment = TRUE,
  printItrSize = 100,
  showProgress = TRUE,
  stopError = 0.01,
  miniBatchSize = NA,
  useBatchProgress = TRUE
)

Arguments

x

a data frame with input variables

y

a data frame with ouptut variable

networkCount

Integer, Number of deepnet or deeptree to build

layerChoice

vector, different layer choices

unitsChoice

vector , number of units choice

cutVarSizePercent

ratio, percentage of variable to for each network

cutDataSizePercent

ratio, percentage of data to for each network

activation

choose from "sigmoid","relu","sin","cos","none".Activations will be randomly chosen from chosen. Default is relu and sin

reluLeak

numeric. Applicable when activation is "relu". Specify value between 0 any number close to zero below 1. Eg: 0.01,0.001 etc

modelType

one of "regress","binary","multiClass". "regress" for regression will create a linear single unit output layer. "binary" will create a single unit sigmoid activated layer. "multiClass" will create layer with units corresponding to number of output classes with softmax activation.

iterations

integer. This indicates number of iteratios or epochs in backpropagtion .The default value is 500.

eta

numeric.Hyperparameter,sets the Learning rate for backpropagation. Eta determines the convergence ability and speed of convergence.

seed

numeric. Set seed with this parameter. Incase of sin activation sometimes changing seed can yeild better results. Default is 2

gradientClip

numeric. Hyperparameter numeric value which limits gradient size for weight update operation in backpropagation. Default is 0.8 . It can take any postive value.

regularisePar

numeric. L2 Regularisation Parameter .

optimiser

one of "gradientDescent","momentum","rmsProp","adam". Default value "adam"

parMomentum

numeric. Applicable for optimiser "mometum" and "adam"

inputSizeImpact

numeric. Adjusts the gradient size by factor of percentage of rows in input. For very small data set setting this to 0 could yeild faster result. Default is 1.

parRmsPropZeroAdjust

numeric. Applicable for optimiser "rmsProp" and "adam"

parRmsProp

numeric.Applicable for optimiser "rmsProp" and "adam"

treeLeaves

vector.Optional , leaves numbers from externally trained tree model can be supplied here. If supplied then model will not build a explicit tree and just fit a neural network to mentioned leaves.

treeMinSplitPercent

numeric. This parameter controls depth of tree setting min split count for leaf subdivision as percentage of observations. Final minimum split will be chosen as max of count calculted with treeMinSplitPercent and treeMinSplitCount. Default 0.3. Range 0 to 1.

treeMinSplitCount

numeric. This parameter controls depth of tree setting min split count.Final minimum split will be chosen as max of count calculted with treeMinSplitPercent and treeMinSplitCount. Default 30

treeCp

complexity parameter. rpart.control

errorCover

Ratio. Deault is 0.2 i.e all models within 20 percent error of best model will be selected.

treeAugment

logical. If True fits deeptree and if False fits deepnet. Default is T

printItrSize

numeric. Number of iterations after which progress message should be shown. Default value 100 and for iterations below 100 atleast 5 messages will be seen

showProgress

logical. True will show progress and F will not show progress

stopError

Numeric. Rmse at which iterations can be stopped. Default is 0.01, can be set as NA in case all iterations needs to run.

miniBatchSize

integer. Set the mini batch size for mini batch gradient

useBatchProgress

logical. Applicable for miniBatch , setting T will use show rmse in Batch and F will show error on full dataset. For large dataset set T

Value

returns model object which can be passed into predict.deepforest

Examples

require(deepdive)

x<-data.frame(x1=runif(10),x2=runif(10))
y<-data.frame(y=10*x$x1+20*x$x2+20)

mdeepf<-deepforest(x,y,
                  networkCount=2,
                  layerChoice=c(2:3),
                  unitsChoice=c(4:10),
                  cutVarSizePercent=0.6,
                  cutDataSizePercent=0.6,
                  activation = c('relu',"sin"),
                  reluLeak=0.01,
                  modelType ='regress',
                  iterations = 10,
                  eta = 10 ^-2,
                  seed=2,
                  gradientClip=0.8,
                  regularisePar=0,
                  optimiser="adam",
                  parMomentum=0.9,
                  inputSizeImpact=1,
                  parRmsPropZeroAdjust=10^-8,
                  parRmsProp=0.9999,
                  treeLeaves=NA,
                  treeMinSplitPercent=0.3,
                  treeMinSplitCount=100,
                  treeCp=0.01 ,
                  errorCover=0.2,
                  treeAugment=TRUE,
                  printItrSize=100,
                  showProgress=TRUE,
                  stopError=0.01,
                  miniBatchSize=64,
                  useBatchProgress=TRUE)

Build and train an Artificial Neural Network of any size

Description

Build and train Artifical Neural Network of any depth in a single line code. Choose the hyperparameters to improve the accuracy or generalisation of model.

Usage

deepnet(
  x,
  y,
  hiddenLayerUnits = c(2, 2),
  activation = c("sigmoid", "relu"),
  reluLeak = 0,
  modelType = c("regress"),
  iterations = 500,
  eta = 10^-2,
  seed = 2,
  gradientClip = 0.8,
  regularisePar = 0,
  optimiser = "adam",
  parMomentum = 0.9,
  inputSizeImpact = 1,
  parRmsPropZeroAdjust = 10^-8,
  parRmsProp = 0.9999,
  printItrSize = 100,
  showProgress = TRUE,
  stopError = 0.01,
  miniBatchSize = NA,
  useBatchProgress = FALSE,
  ignoreNAerror = FALSE,
  normalise = TRUE
)

Arguments

x

a data frame with input variables

y

a data frame with ouptut variable

hiddenLayerUnits

a numeric vector, length of vector indicates number of hidden layers and each element in vector indicates corresponding hidden units Eg: c(6,4) for two layers, one with 6 hiiden units and other with 4 hidden units. Note: Output layer is automatically created.

activation

one of "sigmoid","relu","sin","cos","none". The default is "sigmoid". Choose a activation per hidden layer

reluLeak

numeric. Applicable when activation is "relu". Specify value between 0 any number close to zero below 1. Eg: 0.01,0.001 etc

modelType

one of "regress","binary","multiClass". "regress" for regression will create a linear single unit output layer. "binary" will create a single unit sigmoid activated layer. "multiClass" will create layer with units corresponding to number of output classes with softmax activation.

iterations

integer. This indicates number of iteratios or epochs in backpropagtion .The default value is 500.

eta

numeric.Hyperparameter,sets the Learning rate for backpropagation. Eta determines the convergence ability and speed of convergence.

seed

numeric. Set seed with this parameter. Incase of sin activation sometimes changing seed can yeild better results. Default is 2

gradientClip

numeric. Hyperparameter numeric value which limits gradient size for weight update operation in backpropagation. Default is 0.8 . It can take any postive value.

regularisePar

numeric. L2 Regularisation Parameter .

optimiser

one of "gradientDescent","momentum","rmsProp","adam". Default value "adam"

parMomentum

numeric. Applicable for optimiser "mometum" and "adam"

inputSizeImpact

numeric. Adjusts the gradient size by factor of percentage of rows in input. For very small data set setting this to 0 could yeild faster result. Default is 1.

parRmsPropZeroAdjust

numeric. Applicable for optimiser "rmsProp" and "adam"

parRmsProp

numeric.Applicable for optimiser "rmsProp" and "adam"

printItrSize

numeric. Number of iterations after which progress message should be shown. Default value 100 and for iterations below 100 atleast 5 messages will be seen

showProgress

logical. True will show progress and F will not show progress

stopError

Numeric. Rmse at which iterations can be stopped. Default is 0.01, can be set as NA in case all iterations needs to run.

miniBatchSize

integer. Set the mini batch size for mini batch gradient

useBatchProgress

logical. Applicable for miniBatch , setting T will use show rmse in Batch and F will show error on full dataset. For large dataset set T

ignoreNAerror

logical. Set T if iteration needs to be stopped when predictions become NA

normalise

logical. Set F if normalisation not required.Default T

Value

returns model object which can be passed into predict.deepnet

Examples

require(deepdive)

x <- data.frame(x1 = runif(10),x2 = runif(10))
y<- data.frame(y=20*x$x1 +30*x$x2+10)

#train
modelnet<-deepnet(x,y,c(2,2),
activation = c('relu',"sigmoid"),
reluLeak = 0.01,
modelType = "regress",
iterations =5,
eta=0.8,
optimiser="adam")

#predict
predDeepNet<-predict.deepnet(modelnet,newData=x)

#evaluate
sqrt(mean((predDeepNet$ypred-y$y)^2))

Descision Tree augmented by Artificial Neural Network

Description

This models divides the input space by fitting a tree followed by artificial neural network to each of leaf. Decision tree model is built using rpart package and neural network using deepdive.Feature of stacking predictions from other models is also made available.

Usage

deeptree(
  x,
  y,
  hiddenLayerUnits = c(2, 2),
  activation = c("sigmoid", "sigmoid"),
  reluLeak = 0,
  modelType = "regress",
  iterations = 500,
  eta = 10^-2,
  seed = 2,
  gradientClip = 0.8,
  regularisePar = 0,
  optimiser = "adam",
  parMomentum = 0.9,
  inputSizeImpact = 1,
  parRmsPropZeroAdjust = 10^-8,
  parRmsProp = 0.9999,
  treeLeaves = NA,
  treeMinSplitPercent = 0.3,
  treeMinSplitCount = 30,
  treeCp = 0.01,
  stackPred = NA,
  printItrSize = 100,
  showProgress = TRUE,
  stopError = 0.01,
  miniBatchSize = NA,
  useBatchProgress = TRUE,
  ignoreNAerror = FALSE
)

Arguments

x

a data frame with input variables

y

a data frame with ouptut variable

hiddenLayerUnits

a numeric vector, length of vector indicates number of hidden layers and each element in vector indicates corresponding hidden units Eg: c(6,4) for two layers, one with 6 hiiden units and other with 4 hidden units. Note: Output layer is automatically created.

activation

one of "sigmoid","relu","sin","cos","none". The default is "sigmoid". Choose a activation per hidden layer

reluLeak

numeric. Applicable when activation is "relu". Specify value between 0 any number close to zero below 1. Eg: 0.01,0.001 etc

modelType

one of "regress","binary","multiClass". "regress" for regression will create a linear single unit output layer. "binary" will create a single unit sigmoid activated layer. "multiClass" will create layer with units corresponding to number of output classes with softmax activation.

iterations

integer. This indicates number of iteratios or epochs in backpropagtion .The default value is 500.

eta

numeric.Hyperparameter,sets the Learning rate for backpropagation. Eta determines the convergence ability and speed of convergence.

seed

numeric. Set seed with this parameter. Incase of sin activation sometimes changing seed can yeild better results. Default is 2

gradientClip

numeric. Hyperparameter numeric value which limits gradient size for weight update operation in backpropagation. Default is 0.8 . It can take any postive value.

regularisePar

numeric. L2 Regularisation Parameter .

optimiser

one of "gradientDescent","momentum","rmsProp","adam". Default value "adam"

parMomentum

numeric. Applicable for optimiser "mometum" and "adam"

inputSizeImpact

numeric. Adjusts the gradient size by factor of percentage of rows in input. For very small data set setting this to 0 could yeild faster result. Default is 1.

parRmsPropZeroAdjust

numeric. Applicable for optimiser "rmsProp" and "adam"

parRmsProp

numeric.Applicable for optimiser "rmsProp" and "adam"

treeLeaves

vector.Optional , leaves numbers from externally trained tree model can be supplied here. If supplied then model will not build a explicit tree and just fit a neural network to mentioned leaves.

treeMinSplitPercent

numeric. This parameter controls depth of tree setting min split count for leaf subdivision as percentage of observations. Final minimum split will be chosen as max of count calculted with treeMinSplitPercent and treeMinSplitCount. Default 0.3. Range 0 to 1.

treeMinSplitCount

numeric. This parameter controls depth of tree setting min split count.Final minimum split will be chosen as max of count calculted with treeMinSplitPercent and treeMinSplitCount. Default 30

treeCp

complexity parameter. rpart.control

stackPred

vector.Predictions from buildnet or other models can be supplied here. If for certain leaf stackPrep accuracy is better then stackpred predictions will be chosen.

printItrSize

numeric. Number of iterations after which progress message should be shown. Default value 100 and for iterations below 100 atleast 5 messages will be seen

showProgress

logical. True will show progress and F will not show progress

stopError

Numeric. Rmse at which iterations can be stopped. Default is 0.01, can be set as NA in case all iterations needs to run.

miniBatchSize

integer. Set the mini batch size for mini batch gradient

useBatchProgress

logical. Applicable for miniBatch , setting T will use show rmse in Batch and F will show error on full dataset. For large dataset set T

ignoreNAerror

logical. Set T if iteration needs to be stopped when predictions become NA

Value

returns model object which can be passed into predict.deeptree

Examples

require(deepdive)

x <- data.frame(x1 = runif(10),x2 = runif(10))

y<- data.frame(y=20*x$x1 +30* x$x2 +10)

deepTreeMod<-deeptree(x,
y,
hiddenLayerUnits=c(4,4),
activation = c('relu',"sin"),
reluLeak=0.01,
modelType ='regress',
iterations = 1000,
eta = 0.4,
seed=2,
gradientClip=0.8,
regularisePar=0,
optimiser="adam",
parMomentum=0.9,
inputSizeImpact=1,
parRmsPropZeroAdjust=10^-8,
parRmsProp=0.9999,
treeLeaves=NA,
treeMinSplitPercent=0.4,
treeMinSplitCount=100,
stackPred =NA,
stopError=4,
miniBatchSize=64,
useBatchProgress=TRUE,
ignoreNAerror=FALSE)

Predict Function for DeepForest

Description

Predict Function for DeepForest

Usage

## S3 method for class 'deepforest'
predict(object, newData, ...)

Arguments

object

deepforest model object

newData

pass dataframe for prediction

...

further arguments passed to or from other methods.

Value

returns predictions vector or dataframe


Predict Function for Deepnet

Description

Predict Function for Deepnet

Usage

## S3 method for class 'deepnet'
predict(object, newData, ...)

Arguments

object

deepnet model object

newData

pass dataframe for prediction

...

further arguments passed to or from other methods.

Value

returns predictions vector or dataframe


Predict Function for Deeptree

Description

Predict Function for Deeptree

Usage

## S3 method for class 'deeptree'
predict(object, newData, treeLeaves = NA, stackPred = NA, ...)

Arguments

object

deeptree model object

newData

pass dataframe for prediction

treeLeaves

Pass vector with tree leaves if fit outside deeptree. default NA.

stackPred

Pass stackPred of prediction data if it was passed in deeptree

...

further arguments passed to or from other methods.

Value

returns predictions vector or dataframe


Variable importance for models in this library

Description

Variable importance for models in this library

Usage

variableImportance(model, x, y, showPlot = T, seed = 2)

Arguments

model

Model object

x

a data frame with input variables

y

a data frame with ouptut variable

showPlot

logical. True will show importance plot. Default True

seed

Set seed with this parameter. Incase of sin activation sometimes changing seed can yeild better results. Default is 2

Value

returns variable importance data frame